A point set characterization of closed 2-dimensional manifolds
نویسندگان
چکیده
منابع مشابه
The Point Partition Numbers of Closed 2-manifolds
Let M be a closed 2-manifold. The chromatic number of M is defined to be the maximum chromatic number of all graphs which can be imbedded in M. The famous Four Colour Conjecture states that the chromatic number of the sphere is four. One of the oddities of mathematics is that the chromatic number of the familiar sphere is still unknown, although the chromatic number of every other closed 2-mani...
متن کاملRing structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کاملThree Dimensional Manifolds All of Whose Geodesics Are Closed
Three Dimensional Manifolds All of Whose Geodesics Are Closed John Olsen Wolfgang Ziller, Advisor We present some results concerning the Morse Theory of the energy function on the free loop space of S for metrics all of whose geodesics are closed. We also show how these results may be regarded as partial results on the Berger Conjecture in dimension three.
متن کاملCharacterization of weak fixed point property for new class of set-valued nonexpansive mappings
In this paper, we introduce a new class of set-valued mappings which is called MD-type mappings. This class of mappings is a set-valued case of a class of the D-type mappings. The class of D-type mappings is a generalization of nonexpansive mappings that recently introduced by Kaewkhao and Sokhuma. The class of MD-type mappings includes upper semi-continuous Suzuki type mappings, upper semi-con...
متن کاملMultiple point of self-transverse immesions of certain manifolds
In this paper we will determine the multiple point manifolds of certain self-transverse immersions in Euclidean spaces. Following the triple points, these immersions have a double point self-intersection set which is the image of an immersion of a smooth 5-dimensional manifold, cobordant to Dold manifold $V^5$ or a boundary. We will show there is an immersion of $S^7times P^2$ in $mathbb{R}^{1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1932
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-18-1-39-46